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Figure 1.  Similar samples in handwritten C
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DLA method. Experiments and analysis are presented in 
Section 3. Section 4 concludes this paper.  

II. PROPOSED METHOD 
In this paper, the DLA-based SHCR is consists of the 

following three stages: 
• Similar samples collection and feature extraction: 

Several sets of similar handwritten Chinese are 
firstly built using the static candidate generation 
technique [12].  Then the 8-directional features [9] 
were extracted with D  dimensions. 

• Subspace learning using DLA: In order to find a 
proper subspace Y  from the training samples set X , 
the projection matrix U  is found after the DLA 
manifold learning. For the training set X  including
N  samples, i.e. 1[ ,..., ] D N

NX x x ×= ∈ , and the 
subspace d NY ×∈  with dimensions d D< , the 
discriminate subspace could be obtained by 

TY U X= . 
• Classification: the minimum Euclidean distance 

classifier is implemented to classify the data in 
subspaceY . 

A.  Similar samples collection and feature extraction 
Similar sample set is formed by using the static candidate 

generation technique presented in [12]. The process is 
carried out as follows: First, central sample vectors for each 
category and the distance between them are calculated. After 
comparing all the distances, l categories that are much closer 
than others are selected. Then, a static similar character table 
is formed for all categories, each of which has l  similar 
characters. Second, an unconstrained cursive online HCR is 
implemented and the output is the first candidate character. 
Third, similar samples for each character are collection 
according to the table formed in the first step.  

We used the 8-directional features extraction method 
proposed by Z.L. Bai and Q.Huo [9] to extract feature for 
similar samples. 

B. Subspace projection using DLA manifold learning 
a) LDA subspace learning 

LDA aims at maximizing the distances between means of 
each class and minimizing the distances of within-class 
scatter simultaneously in the projected sample subspace [11].  
The objection function of LDA is given by: 

          

( )
arg max

( )

. .

T
w

T
U b

T
d

tr U S U
tr U S U

s t UU I=
 (1) 

where 
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j
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= − −∑ ;                       (3) 

WS is the within-class scatter matrix; bS  is the between-
class scatter matrix; jm  is the sample mean for the jth class; 
m  is the sample mean for all samples. 

If the original feature space is 1[ ,..., ] D N
NX x x ×= ∈ , to 

find a proper subspace d NY ×∈ that preserved the 
dominative discriminate information to recognize similar 
character effectively, the projection matrix U  should be 
obtained by maximizing Eq.(1). If wS  is nonsingular, then 
U can be obtained by solving a conventional eigenvalue 
problem of 1

w bS S− . Suppose the subspace dimension is d ; 
then U is composed of d eigenvector corresponding to the
d  largest eigenvalue. The projected subspace is obtained by

TY U X= . 
 
b) DLA subspace learning 

Different from the global linear optimization principle in 
LDA, DLA aims to preserve the discriminate information in 
a local patch instead of the global linear structure of LDA. In 
each patch, DLA firstly operates “part optimization” to a 
given sample, so that in a low dimensional subspace, the 
distance between the given sample and its neighbors in 
identical class will be as small as possible, whereas its 
neighbors in different class will be as large as possible. Then, 
DLA operates “whole alignment” to integrate all the 
weighted part optimization to form a global subspace 
structure [10].  
1) Part Optimization 

The part optimization stage of DLA starts from each 
given sample and the corresponding patch. Each patch is 
built by the given sample and its neighbors including the 
samples from both the same and different classes [10][11].  

For a given sample ix  and its corresponding patch, we 
can find 1m closest samples 1 1,..., mi i

x x that from the same 
class with ix  , and 2m closest samples 

1 2
,...,

mi ix x  that from 
different classes. Let the training set be

1 1 1 2
[ , ,... , ,..., ]m mi i i ii i

X x x x x x=  . The goal of part optimization 
is to find a new low dimensional subspace 

1 1 1 2
[ , ,... , ,..., ]m mi i i ii i

Y y y y y y= . In the subspace, the between-
class distance is maximized, whereas the within-class 
distance is minimized.  

Fig. 2 illustrates the process of part optimization in the 
situation when 1 23, 2m m= = . It shows that in the projected 
subspace, ix is closer to the samples from identical class ( 1i

x
2i

x 3i
x ), whereas the distance between ix and the samples 

from different class (
1i

x
2i

x ) is larger. 
The optimization function in part optimization stage is 

given by: 
1 2 22

1 1
arg min( )j p

m m

i i ii
j p

y y y yβ
= =

− − −∑ ∑  ,                 (4) 
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where β  is a scaling factor in [0, 1], which can change the 
contribution to optimization function for within-class and 
between-class distance. 
     If we define the coefficients vector and matrix iL  that 
contains the local geometry property and discriminative 
information, then Eq. (5) can be reduced to [10]: 

arg min ( )
i

T
i i i

Y
tr Y L Y                                            (5) 

where,  

[1,...,1, ,..., ]
nm

T
iω β β= − −  (6) 

1
( )

( )

m n
T

i i
ji

i i

L
diag

ω ω

ω ω

+

=

⎡ ⎤−⎢ ⎥= ⎢ ⎥
⎢ ⎥−⎣ ⎦

∑  (7) 

        
 
 
 
 
 
 
 
 
 
 
 

Figure 2.  The process of part optimization. 

2) Whole alignment 
After part optimization stage, we obtain N

 
local 

alignment matrixes ( 1... )iL i N= for each sample. In the 
whole alignment stage, each iL  are summarized according to 
sample weighting in a global coordinate to form the global 
alignment matrix L [13], then the objection function is given 
as: 

arg min ( )T

Y
tr YLY                                      (8) 

Since Y  can be obtained by ,  . .T T
dY U X s tUU I= = , Eq. 

(8) can be then rewritten as: 
arg min ( )

. .

T T

U
T

d

tr U XLX U

s t U U I=
                          (9) 

where U is the projection matrix. 
U can be obtained by solving a conventional 

eigenvalue problem for TXLX , i.e. then U is composed of 
d eigenvector corresponding to the d  smallest eigenvalue of  

TXLX . 

C. Classifier 
After the 8-directional features [9] are extracted for the 

similar handwritten characters, the original features are 
projected into low dimensional discriminant subspace using 

either LDA or DLA. Then a simple minimum Euclidean 
distance classifier is used for recognition. 

III. EXPERIMENTS 

A. Experimental Data 
In this paper, the benchmark dataset comes from the 

SCUT-COUCH2009 dataset [14]. SCUT-COUCH2009 is an 
online unconstrained Chinese handwriting dataset, which 
contains 11 subsets of different vocabularies, including GB1, 
GB2, Letters, Digit, Symbol, Word8888 etc, and all the 
samples are collected from more than 190 subjects. In the 
following experiments, the GB1 subset is used, which 
contains 3,755 frequently used simplified Chinese characters 
in GB-2312-80 standard. In SHCR experiments, 10 sets of 
similar characters are randomly selected. Table Ⅰ lists the 
ten similar character sets we used in the following 
experiments. Fig.3 shows some similar characters and the 
corresponding handwritten samples.  

TABLE I.  SIMILAR CHARACTERS SETS 

Set# First 
Candidate 

Similar characters 

1 癌 癌瘤瘟瘸痞痴痹瘪痛痊 

2 爱 爱受复赏夏曼笺聂赁缓 

3 氨 氨氮氦氯氢氛氰姜氖氟 

4 盎 盎蛊盅盏盔盗鸯签置盘 

5 笆 笆爸琶筐邑笔芭岂色苞 

6 茬 茬荐若苯荒茎巷苦花芜 

7 差 差羞羌姜善羔美养羡盖 

8 柴 柴柒紫染架桨渠梨梁粱 

9 敞 敞敝敲敬澈版骸歇淑散 

10 大 大丈人太犬木友支术入 

 
 
 
 
 
 
 
 
 
 

 
Figure 3.  Similar charcter samples and the corresponding handwritten 

samples 

B. Parameters optimizaion for DLA 

Since the parameters setup for DLA is essential for its 
performance, we carried out the DLA parameter 
optimization experiments before for SHCR. We aims to find 
a proper range for the dominant parameters 1 2,m m  in DLA, 
where 1m  is the number of the samples from identical class 
in the given patch, and 2m  is the number of the samples 
from other classes in the same given patch. Parameter β is 
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set to an empirical value 0.15 and the reduced dimension is 
set to 9. 

Suppose n is the training sample number in each class,
N  is the total training sample number, and C is class 
number. We have N C n= ×  Then, 1m and 2m could be 
chosen in the range of [ ]1, 1n − and [ ]0, N n− respectively. 

Fig. 4 shows the recognition rate against different 1m  
and 2m  values using the similar samples table mentioned 
above (See Table1 and Fig. 3), which character set with used 
“ 氨 ” as the first candidate. When 30n = , different 
combinations of 1 2,m m  pairs result in different recognition 
rates All the possible combination of ,m n  and the 
corresponding accuracy are visualized in Fig. 4, where the 
red region represented the best performance by DLA.  

  In this experiment, Fig. 4 shows that, the best 
combination of 1 2,m m  is 1 229, 50m m= = , with the 
corresponding accuracy 95.82%. It is worthwhile to note 
that when the parameters are chosen to 1 210, 30m m= = , 
the recognition rate can reach to 95.4%, which is a only rate 
decrease of less than 0.5% to 95.82 %( 1 229, 50m m= = ). 
Since 1 2,m m  could be chosen in a reasonable board region, 
and considering the computing cost, a sub-optimization 
combination 1 210, 30m m= = is chosen in the following 
experiments for all other similar character sets. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4.  Recognition rate vs. 1m  and 2m  for DLA parameters 
optimization 

C. DLA evaluation experiments for SHCR 
To evaluation the performance of DLA in SHCR, the 

comparison experiments between DLA and LDA are carried 
out. In the experiments, we compare DLA and LDA in small 
training sample size setting (hereafter we denote them as 
DLA1 and LDA1 respectively) and (relatively) large training 
sample size setting (denoted as DLA2 and LDA2 
respectively) for the ten similar characters sets listed in Table 
Ⅰ. Note that each class of character has 188 training and 
testing samples in total.  

In DLA1 and LDA1 setting, we randomly select 30 of 
188 samples per character for training (i.e. 30n = ); and in 
DLA2 and LDA2 we set 80n = . In both the settings, the 

remaining samples are used for testing. Fig. 5 shows the 
recognition rate versus reduced dimensions for the ten 
similar character sets.  

For comparison convenience, we arrange the experiment 
results in Table Ⅱand Table Ⅲ for the ten similar character 
sets. Table Ⅱ lists the average recognition rates and the 
corresponding reduced dimensions for both DLA and LDA 
under two different data settings; whereas Table Ⅲ lists the 
best recognition rates. 

TABLE II.  AVERAGE RECOGNITION RATES(%)  

Reduced 
Dimension 

n=30 n=80 
DLA1 LDA1 DLA2 LDA2 

1 0.361 0.269 0.358 0.330
2 0.638 0.428 0.608 0.527
3 0.789 0.560 0.791 0.658
4 0.860 0.647 0.865 0.740
5 0.908 0.729 0.912 0.796
6 0.927 0.775 0.933 0.835
7 0.937 0.808 0.944 0.869
8 0.947 0.838 0.957 0.897
9 0.957 0.856 0.963 0.915

D. Analysis of the Results 
From Fig. 5, Table Ⅱ and Table Ⅲ, the performance of 

DLA in SHCR can be analyzed in three aspects: 
• In Fig.5 and Table Ⅱ, it is shown that in the same 

reduced dimensions, the recognition rates of both 
DLA1 and DLA2 are significantly higher than that 
of LDA1 and LDA2 respectively. It also shows 
when the recognition rate is in the same level, DLA 
have a better dimension reduction performance than 
LDA. For example, we can see from Table Ⅱ that 
when recognition rate reaches to over 0.85%, the 
DLA1 with reduced dimension of 4 outperforms  
LDA1 with reduced dimension of 9. 

• In Fig. 5 and Table Ⅱ, it can be seen that in the same 
reduced dimensions, recognition rates in DLA1 and 
DLA2 have just a little variation; whereas the rates 
in LDA1 are consistently lower than LDA2. It 
demonstrates that DLA can maintain better 
recognition performance than LDA in SHCR when 
the training samples size is relatively small. 

• From Table Ⅲ, it is shown that the best recognition 
rates in DLA1 and DLA2 are consistently higher 
than those in LDA1 and LDA2 for all similar 
character sets. It confirms us that DLA have better 
discriminant recognition performance than LDA for 
SHCR. 

IV. CONCLUSION 
In this paper, a manifold based subspace learning 

algorithm, Discriminative Locality Alignment (DLA), has 
been introduced for similar handwritten Chinese character 
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recognition (SHCR). Comparing to the traditional widely 
used LDA subspace learning techniques, DLA has shown 
many competitive and attractive properties, and it is 
consistently superior to LDA. From the experiments, we can 
draw the following conclusions: 
1) The discriminate information extraction and dimension 

reduction performance of DLA is very competitive in 
SHCR, for it can consistently achieve better recognition 
accuracies and better dimension reduction than LDA in 
the SHCR experiments. 

2) In SHCR, DLA is a robust and promising manifold 
learning method that overcomes many computation 
problems including matrix singular problem, small 
sample size problem, and reduced dimension upper 
bound problem. 

3) DLA is potentially useful for real world applications, 
for it can perform high recognition accuracy with a 
smaller projection matrix than that of LDA. That results 
in a much smaller storage cost with higher recognition 
performance, which could be very useful for many 
practical recognition applications. 
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Figure 5.  Recognition rate vs. diminsionality for ten similar character groups 
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1 

SET 
2 

SET 
3 

SET 
4 

SET 
5 

SET 
6 

SET 
7 

SET 
8 

SET 
9 

SET 
10 

n=30 
DLA1 0.981(9) 0.977(9) 0.943(9) 0.966(11) 0.968(14) 0.950(15) 0.938(10) 0.925(17) 0.959(9) 0.971(10) 
LDA1 0.923(9) 0.898(9) 0.805(9) 0.896(9) 0.853(9) 0.810(9) 0.791(9) 0.785(8) 0.876(9) 0.927(9) 

n=80 
DLA2 0.986(9) 0.973(9) 0.954(9) 0.979(12) 0.970(9) 0.944(9) 0.943(9) 0.944(9) 0.967(9) 0.969(13) 
LDA2 0.940(9) 0.935(9) 0.869(9) 0.950(9) 0.930(9) 0.886(9) 0.881(9) 0.874(9) 0.933(9) 0.947(9) 
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